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The influence of higher order terms in the Taylor expansions, applied to the Least-Squares [LS] 
and the Differential Synthesis [DS] expressions in single crystal structure refinement, is discussed 
and their convergence effect illustrated. I t  is shown that  these higher order terms are not usually 
negligible and that  their inclusion in the algorithms applied, contributes to early convergence 
stability. 

General  observat ions  

Both the least-squares [LS] and  the differential 
synthesis [DS] method have now been used for a 
considerable time, so t ha t  adequate  reference l i terature 
is available.  Thus, not to repeat  overmuch detail ,  the 
reader  is presumed famil iar  with it (Hughes, 1941; 
Booth 1946; Cruickshank,  1952). 

LS  algebra is in general easier to derive and simpler 
to apply,  having its roots in mathemat ics ,  t han  the 
corresponding DS algori thms which originate from 
physical  models. The ponderosi ty  inherent  in the 
la t te r  gives rise to more complex and more numerous 
summations .  

The use of either method is much a ma t t e r  of per- 
sonal tas te  (Jeffrey & Shiono, 1959). The LS  method 
is basically one of minimization of differences. The DS 
method involves the normalization of quotients of 
observed and calculated quantit ies,  and in tha t  process 
ordinari ly cancels out scale factors. 

Refinement  matr ices  

Whateve r  numerical  refinement method is used will 
lead to a set of s imultaneous equat ions in those 
unknowns referred to as the atomic parameters. 
Depending upon the degree of sophistication, a set 
of paramete rs  for one a tom may  consist of three 
positional coordinates and one or more heat  movement  
constants.  If  the heat  movement  is assumed to be 
isotropic over the whole unit  cell, one tempera ture  
constant  is applied to all a tomic sets (Friedlander 
et al., 1955). Or, if heat  movement  of any a tom is 
considered to be isotropic, but  different from other 
atoms,  there will be one constant  per a tom (Sparks 
et al., 1956; Eichhorn,  1956). Finally it is possible to 
associate heat  movement  with a paramet r ic  equation 
t h a t  takes  account  of ellipsoidal anisotropy in the 
thermal  behavior of the atom, and we then find six 
constants  describing the heat  movement  (the Debye -  
Waller  constants).  

The complexity of the set of s imultaneous equations 
(the normal equations of the problem) is thus  largely 
determined by the model. I t  is possible to set up one 
all-encompassing mat r ix  for all unknowns in the unit  

cell (Busing & Levy,  1959). The inversion of such 
very  large matrices however is not a tr ivial  ma t t e r  
and involves studies in round-off and t runca t ion  error 
propagat ion.  

Ordinari ly elastic interact ion between neighboring 
a toms is neglected in ref inement calculations, and each 
set of atomic paramete rs  is t rea ted  individually,  
giving rise to atomic matr ices of order three to ten, 
depending on the degree of complexi ty  one wishes to 
introduce (Rossnmnn et al., 1959). 

T a y l o r  expans ions  

I. Let  us first  consider the set of s imultaneous nor- 
real equations,  (the three-by-three ease) used in the 
solution of the positional coordinates of an a tom I. 

In  the classical DS, the analyt ic  expression for 0 
is differentiated with respect to the three unit  cell 
coordinates. Corrections sx are introduced into the 
differential [~9/~X]I equation,  to make the slopes 
equal to zero. The approximat ion  sin e ~  s, and 
cos s ~ 1, is applied to free the equations from higher 
orders of s. 

In  a later  var ia t ion of the DS, the algori thm is 
applied not only to the observed, but  also to the 
calculated slopes a t  the peak input  position, to correct 
the resulting shifts ex for termination-of-series. This 
method requires the calculation of six observed and 
six calculated curvatures  and three observed and three 
calculated slopes: 18 summat ion  in all. 

Almost  the same result can be achieved by applying 
a Taylor  expansion to o. If  s be a correction to the 
s ta t ionary  values, the complete expression for the 
Taylor  series of a function fib, mul t ivar ia te  with respect 
to the three dimensions x, y and z, may  then be 
~Titten : 

fib[(a + sx), (b + sy), (c + ~z)] = fib[a, b, c] 

+ ~ ' [ n =  1 --> ~ ] ( 1 / n ! ) .  [ ( ~ .  ~/~x+ sy. ~/~y 
+ Sz. c/vz) ¢~[x, y, z]] , 

with x=a,  y=b,  z=c  as s ta t ionary  values. (1) 

For  a tom I the peak density 9~ will be considered, 
and sx  will be wri t ten AX.  If  we take  n = l  in ex- 



1216 L E A S T - S Q U A R E S  A N D  D I F F E R E N T I A L  S Y N T H E S I S  A L G O R I T H M S  

pression (1), the three slopes of ~ can now be expanded 
into : 

[ ?e/ BX],, ,~k = [ Bo/ BX],.c~ + Z~AX.  [ B/ BX][ ~e/ B Y],.c~ 
where X m a y  equal Y. (2) 

The three result ing normal equations are similar  in 
all respects to those obtained from the algori thm 
described earlier, except for the implied assumption 
tha t  the curvatures will be the same for the observed 
and the calculated set of Fourier  coefficients; this is 
more true as the ref inement  stage becomes more near ly  
converged. 

For the LS method the Taylor  expansion is applied 
to the structure factors, and the principle of Legendre 
is operated upon the summat ions  thus obtained. This 
yields the LS normal  equat ions (Sparks, 1960). 

II. To set up the normal  equations for the six 
unknowns occurring in the correction of the anisotropic 
heat  movement  parameters ,  a very  s imilar  procedure 
can be derived, almost  by  analog, for the LS case. 
I t  is less obvious for the DS model;  Cruickshank in 
1956 for the first t ime showed how this could be done 
through Taylor expansion of the curvatures (Cruick- 
shank, 1956) : 

[ Bet.)/~X. ~ Y]zo~s = [ Be~/~X. B Y],, ~¢ 

+ )_.,~ABH~:. [ B/BBH~,:][ 820/?X. B Y],. ~ 

where H m a y  equal K, and X may  equal Y. (3) 

Cruickshank moreover was able to prove tha t  
but  for a t r ivial  scale factor the th i rd  der ivat ive 
~ / B X .  B Y.  ~BHK is approximate ly  equal in numerical  
value to the fourth derivat ive B~o/BX~.BY '~ (with 
similar  equalit ies for all other derivat ive combinations 
in the above expression). 

I t  is noted tha t  in (3) again the Taylor expansion is 
broken off after the first term• We shall now in- 
vestigate what  becomes of relat ion (2) when the Taylor 
expansion is carried to n=2.  We then find, leaving 
out the subscript  I for clari ty:  

1 ~ / ~ x =  Ax. B~O/Bx~+ Ay. B~/Bx. ~y+Az. 8~O/~x. Pz 
+ (1/2). (Ax e. BaO/Bxa+ Ay2. ?~/Bx. By 2 
+ Aze. 8a~/Bx. Bz ~) + Ax.  Ay.  ~a~/Bx2. ?y 

+ Ax.  Az. Ba~/Bxe. Bz+ Ay.  Az. ~ / B x .  ?y. Bz. (4) 

There are three such equations. Assuming O~x, ~ov, wz 
to be a set of sat isfactory ini t ial  values of Ax, Ay 
and Az, one m a y  then apply  the following simple 
i terat ion scheme to obtain f inal  solutions to the now 
uo longer l inear equations:  

A Bo/Bx= Ax. [B~O/Bx~+ (1/2). (w~. B~/Bx ~ 

+ o~v. BaO/Bx2. @+ o~. B~O/Bx2. Bz)] 

+ Ay.  [BeO/Bx. By+ (1/2). (w~. B~O/Bx ~. By 
+ o~. Ba~/Bx. ~y2+ (o~. Ba~/~x. By. Bz)] 

+ Az. [~20/8x. Bz + (1/2). (o.)x. Ba~/~x ~ . Bz 
+ o~v. B~/Bx. By. Bz+ w~. ~O/~x. ?z~)] . (5) 

The init ial  solutions ~o are either the diagonal approx- 
imations or else the shifts obtained from (2). Sub- 
sequent values of AX are compared against  preceding 
ones, and if the individual  differences are all below a 
given threshold, i terat ion is discontinued. I t  is found 
tha t  between two and nine i terations will do the job, 
if the init ial  model was reasonable. 

III .  The Taylor expansion to second order terms 
is more involved for the LS case. We associate an 
observational  error E,  with atom I, and now write, 
for the positional corrections only: 

+ A yl..SH WH. [ ?FH/By]! + A zi. XH ~ H. [ bFH/~Z]I 
+ Ax~.[1/2].Z'uw'~,.[ ~eFH/BX2]~ 

+ Aye. [1/2]. XH(O~. [ ~2FH/Bye]! 
+ Az~.[1/2].XHOJ~,.[~2FH/BZ2], 
+ Axe. Aye. XHO;~. [F'FH/~x. ~y]~ 
+ A x~..'l z,. ZH o~ .  [ ?~FH/~x. Bz], 
+ Aye. Az~. Zgw~.  [FZF,/?y. Bz]~] - Zgw,./__IF.) 2. 

(6) 

Expression (6) represents the generat ing equation, 
from which the normal  equations are obtained through 
differentiat ion with respect to Ax, Ay and Az. This 
is an algebraically tedious business, result ing in terms 
tha t  contain the corrections to the first, second and 
th i rd  power. The solution of the set of equations 
obtained however is no more involved than  tha t  from 
the DS scheme since the same algori thmic procedure 
is appl ied as set out in (5), with only a logical var iant  
in the assignment of i terat ion terms. 

Relaxat ion 

The i terat ion scheme for sets of non-linear equations 
becomes more complicated with increase of the mat r ix  
dimensions. Thus, a different procedure was adopted 
for the six-by-six matrices result ing from second order 
term Taylor expansion of the Debye-Wal le r  correc- 
tions, in the DS algorithm. 

The set of equations produced is, e.g. 

A ~2Q/Bx2 = dBhh. [B4~/Bx 4 
+ wha. ~sQ/Bx4. ?Baa + 09kk. BsO/Bx 4. ~BkA- 

+ w , .  BsO/Bx 4. BB, + w ~ .  ~50/?x4. ~Bl, k 
+ whz. ~5~/~x4. ?B~z+ w~.z. BsQ/Bx 4. BBkz] 

+ ABkk. [ . . . ] 

+ A B n . [ . . . ]  . (7) 

A very simple i terat ion sceheme is tha t  where 

(o=[p.oJ(~+~)+(1-p) .~o~] ,  with 1 ~ p ~ 0 ,  (8) 

where p is a percentage of mix. Judicious choice of p 
will often give satisfactory convergence upon a set of 
solutions. 
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I t  is on the whole bet ter  to va ry  both co and the 
corresponding r igh t -hand element,  a re laxat ion proce- 
dure. Since the set of quadra t ic  equations has more 
t han  just  one set of solutions, we must  constrain the 
convergence to tha t  set which is physically significant. 
Some sets m a y  encompass complex quanti t ies or large 
values, which are absurd  when related to the case 
at  hand.  While the zero-approximate  solution is a 
good enough s tar t ing  point  in the three-by-three 
matr ix ,  this m a y  not  be so in the six-by-six one. 
We then set out from first solutions all zero, and seek 
tha t  set of final solutions, all numerical  values of 
which are real and small. There is only one such set. 

If  the observed r ight -hand vector is V[obs.], the cal- 
culated r igh t -hand  vector will initially be V[cc]=O 
(all solutions are zero). The differences between the 
observed and calculated r ight -hand components are 
now divided by, say 20. The mat r ix  is solved by itera- 
tion for V =  V[cc]-(A V/20). The solutions thus ob- 
ta ined will be small quantit ies.  This set of solutions 
is then  utilized as the zero-approximate  set for V-- 
V[cc]'-(AV'/19),  and  this procedure is continued 
until  V =  V[obs.]. 

In  order to speed the scheme and to circum- 
navigate  in termediate  solutions which may  be small 
imaginary  numbers ,  a quite coarse threshold value is 
chosen as the convergence criterion when V~: V[obs.]. 
We have used 0.0020 as the convergence threshold 
until  V =  V[obs.], when this value was changed to 
0.00000020; if this tolerance is a t ta ined,  it is found 
tha t  the sum of the absolute values of the discrepancy 
._4 V, af ter  the final operation, m a y  still be of the order 
of 0.03-0.05, since the equations are sensitive. 

Another  va r ian t  to the basic method is tha t ,  where 
instead of s tar t ing out with a zero r igh t -hand vector, 
all r igh t -hand components except the 'uppermost '  
one are zeroed. Then a solution is i tera ted  out which 
satisfies this initial V. When the solution has been 
found, the second observed element for the r ight-hand 
vector is added, and the next  set of solutions is i tera ted 
out. And so forth until  the complete r igh t -hand vector 
is satisfied. This is the drop-by-drop method. 

In  equations (7) the four th  der ivat ive arises out of 
the first  order Taylor  expansion and will thus  be 
called the main component of any  element. The fifth 
derivatives,  mult ipl ied by the appropr ia te  o) then 
are the perturbations of the element. 

a,j = m,j + z~,6Pij 
(a~i = element,  m~j = main component,  

pij = perturbat ion)  . (9) 

There are six per tu rba t ion  components in each 
element,  and their sum must  not  be equal to or exceed 
the magni tude  of the main  component,  or else the 
Taylor  series is divergent.  In  fact,  if we define 

P = 100. (ai j -  m~j)/mij 

(% as the percentage perturbation) 
(10) 

then a P value in excess of say, 50% would a l ready  
indicate tha t  the thi rd  order terms are not  negligible. 
If  the per turba t ion  sum is made to include the higher 
order terms,  and a new P value still above the 50%, 
this again means t ha t  the next-higher  approximat ion  
must  be used to obtain significant solutions. 

To assess the set of solutions obtained from the 
re laxat ion procedure, the P value must  be given. 
If  P is too large the relaxat ion operat ion should be 
bypassed. 

I t  is obvious t ha t  if ref inement converges properly,  
the mean value of P over all refined a toms should 
decrease from cycle to cycle. 

Numerical experiments 

The algori thms described earlier were p rogrammed on 
a Burroughs 220 computer,  using the ALGOL symbolic 
language. Several trial models were constructed based 
on a compound containing ten non-hydrogen atoms in 
the asymmetr ic  unit  of a P i  unit  cell, and a l ready 
refined to a percentage discrepancy of about  11%. 

This s t ructure  was first  moved l0 millicycles along 
unit cell body diagonals;  the anisotropic t empera ture  
factor constants  were either reduced or enlarged by  
5%. The resulting coordinate sets yielded R-factors 
of between 28 and 33% with respect to the F[cc] set 
obtained from the refined positions. 

In  another  exper iment  pseudo-random shifts of l0 
millicycles were applied to the x, y, and z-coordinates; 
again a 5% random reduct ion or expansion of the 
Debye-Wal le r  constants  was introduced. Here too 
the resulting R-factors were approximate ly  30%. 

Several refinement cycles were computed for each 
case and with each p rogrammed algorithm. Their 
general results will now be outlined. 

Early refinement stage 

There does not  seem to be much point  in applying 
higher order Taylor  expansions here in order to gain 
convergence speed. Rathe r  do we find t ha t  the higher 
order terms help gain convergence. We have,  e.g., 
assumed tha t  if, s tar t ing from an initial model, a co- 
ordinate shift would turn  out to be in excess of 20 m.c. 
in the  right direction or 10 m.c. in the wrong direction 
of any  atom, this position would get ' lost '  by over- 
oscillation and the model would not  converge. In  all 
cases where this overoscillation occurred with the first  
te rm Taylor  method,  the introduct ion of the second 
order te rm suppressed the overoscillation. Once con- 
vergence was at ta ined,  the speed of convergence was 
the same within 0.3% in R per cycle, if R was in the 

O /  range of 24 to 29/o. 
I t  was found tha t  there is no point  a t  all in intro- 

ducing anisotropic heat  movement  parameters  (in the 
models we chose) when R was above 14 to 17%. The 
average P value then varies from, say 15 to 65%, 
and inclusion of Debye-Wal le r  constant  corrections 
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merely offsets the m o m e n t a r y  discrepancy between 
observed and calculated curvatures,  thus  in fact  
impeding convergence on the correct positional values. 
This is well-known, of course, and it is general practice 
to come to near-converged positional parameters  
before introducing the six Debye-Wal le r  factors. 

Again very  little if anyth ing  is gained in con- 
vergence speed by the use of nine-by-nine blocks 
above three-by-three blocks (only), for reasons which 
m a y  be distilled from the preceding paragraph .  I t  is 
thus  probably  best to s ta r t  with the simplest possible 
algori thm until  convergence has gained way.  In  our 
models we found tha t  two to four refinement cycles 
with the simple three-by-three method were required 
to a t t a in  a point  where addit ional  finesse was rewarded 
by recognizable results. 

Middle refinement stages 

In  our cases a t  an R of approximate ly  17% the 
difference in convergence speed, comparing the 
(3-by-3) with a [(3-by-3)+(6-by-6)]  or a (9-by-9) 
method,  became significant. The same held t rue for 
comparisons of first  order Taylor  methods with second 
order ones. The higher order matr ices will give from 
1 to 7% faster  R loss per cycle, the second order 
correction becoming par t icular ly  noticeable in this 
range, with P of the order of 3 to 15%. In  this refine- 
ment  stage also the gain in convergence speed more 
than  offsets the longer computa t ion  t imes- -genera l ly  
speak ing- -of  the more complex algorithms, and these 
then become meaningful  as a convergence accelerator.  

Polishing stages 

When the percentage discrepancy had sunk below 
I 1%, the P values became ra ther  small, and paramet r ic  
corrections because of them are not  significant in the 
light of subsequent  refinement.  The higher order 
Taylor  terms then m a y  be left out. This however only 
applies to the positional parameters .  

The Debye-Wal le r  corrections profit  from the sec- 
ond order Taylor  terms,  since P,  in the six-by-six 
matrices is still of the order of a few percent  (we are 
in fact  looking into the possible need of calculating 
thi rd  order per turbat ions ,  since the second order P 
values are still too high for our liking a t  R approx- 
imately 5%). 

Examples 

To show the effect of second order terms in positional 
corrections, we m a y  take  a model from our collection, 
a t  R = 2 8 % ;  in one of the oxygen atoms, the shifts 
were computed as follows: 

I t  is seen tha t  in the diagonal approximat ion  the 
shift would be a marginal  one, bordering over- 
oscillation. I t  is still large in the first order approx- 
imation,  with both x and z overshifting, and y under- 
shifting the 10 m.c. opt imal  value. In  the second order 
Taylor  method,  the x and z shifts are near-correct,  
a t  the expense of an undershift  in y. 

Despite the bad prognosis on the basis of the R 
value, we a t t emp ted  Debye-Wal le r  correction on the 
'best '  a tom, a phosphorus with P of the order of 9% 
in the six-by-six matr ix .  Here is what  we found:  

First order shifts Second order shifts 

/Ib[hh] = -- 0-0(1307 -- 0"00288 
.Jb[ kk ] ---- -- (}.00218 -- 0.00206 
~]b[ll] = -- 0.00242 --0.00237 
:]bLh/c] = -- 0.00946 -- 0"00922 
~4b{ hl] = -- 0.00219 -- 0.00216 
Ab[klJ = --0.00129 --0-00131 

On average the higher order shifts are less than  the 
first order shifts by approximate ly  3%;  in our case 
improvement  in the correct direction. 

Comparisons of the LS and the DS algorithm 

In  the L S  algori thms to = uni ty  was always taken.  I t  
is emphasized tha t  this decision was not one t ha t  would 
normally have been made;  it was prompted  by our 
wish to avoid the quanda ry  of ~o choice. 

In  our models the L S  algori thm yields smaller shifts 
and is less prone to over-oscillation for t ha t  very  reason. 
However  convergence per refinement cycle is slower 
than  in the D S  algori thm of comparable complexity 
in setup conditions. Again, the total  t ime per unit  of 
R loss is about  the same in the L S  and the D S  method,  
because the D S  procedure requires more sums to be 
calculated and takes longer to compute per  cycle. 

I t  i8 therefore probably correct to say  that while  the 
convergence per cycle is steeper in  the D S  method, the 
convergence per un i t  o f  computa t ion  t ime is about the 
same for  the D S  and  the L S  methods. 

This remarkab ly  enough is also the case for our 
models when one considers the [(3-t)y-3)+(6-by-6)] 
algori thms versus the 9-by-9 ones. The convergence 
per uni t  of computer  t ime is about  the same in both 
cases. If  a large s t ructure  is calculated on a medium- 
sized computer  one will possibly want  to adopt  the 
simplified algori thm not only because of storage 
constraints,  but  also in order to par t i t ion refinement 
t ime into sensible run-lengths. Too, there always is 
the danger  of a system gremlin appearing in the last 
pa r t  of a colnputat ion and put t ing  much of the preced- 
ing work to nought.  

Diagonal First order Second order 
m.c. approximation Taylor terms Taylor terms 

/Ix -- 0.020 -- 0-016 - 0.011 
Ay + 0-011 + 0.006 + 0.004 
Az --0.011 --0.012 --0.011 

Comparison of higher order matrices with 
higher order approximations 

We have no doubt  t ha t  the effects of higher order 
terms in the Taylor  expansions are an order of 
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magni tude more impor tan t  t han  those arising out  of 
the addi t ional  cross-terms when a [(3-by-3)+ (6-by-6)] 
method is replaced by a 9-by-9 one. This is quite 
evident  in the middle stages of refinement.  

The author  stands in obligat ion to many  of his 
colleagues for the benefit  of profcssional a rgument  and 
to Burroughs Corporat ion for placing computing 
equipment  at  his disposal. Prof. Dr C. H. MacGillavry 
contr ibuted the s t ructure and the Weissenberg da ta  
of the triclinic centric monocalciumphosphi te  mono- 
hydra te  as a guinea pig for our experiments.  I r  
Willem J. van de Lindt  of Burroughs Professional 
Services was good enough to check over the com- 
puta t iona l  detail  of the re laxat ion procedures and to 
point  out certain fast  variants .  
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The Crystal Structure of Cobalt Sulfate Hexahydrate* 
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Berkeley, California, U . S . A .  

(Received 2 October 1961) 

CoSO 4. 6H20 crystallizes in the monoclinic system, C2/c. The cell dimensions are 

a=10.032, b=7.233, e=24.261 A; fl=98.37 °. 

There are 8 molecules in the unit  cell; the X-ray density is 2.006 g.cm. -a. The structure consists of 
sulfate tetrahedra and cobalt-centered water oetahc(lra linked by a three dimensional network of 
hydrogen bonds. Eleven of the twelve hydrogen bonds are between water and sulfate oxygens; 
there is one water to water hydrogen bond. The average S-O sulfate distance is 1.46 A; the average 
Co-() distance in the water octahedra is 2. I1 A; and the average hydrogen bond (O-H • • • O) is 
2"8 A. There are two crystallograI)hically different Co ++ ions in the structure. The hydrogen atoms 
are assigned an ordered configuration which would not contribute to residual entropy at low 
temperatures. 

Introduction 

Calorimetric measurements  by Rao & Giauque (1960) 
showed some unaccountable  residual en t ropy  in crys- 
tals of COS04.6H,.,0 at  low temperatures .  We have 
invest igated the crystal  s t ructure  in search of an 
explanat ion  of the disorder. The resulting s t ructure  
offers no possibil i ty of disordered rings of hydrogen 
bonds such as were found in Na2SO4.10H20 (Ruben, 
Templeton,  Rosenstein & Olovsson, 1960), nor do we 
find any  other explanat ion  of the en t ropy  discrepancy. 

The crystal  morphology was described by Marignac 
(1855), and Groth (1908). 

* Work done under  the ansi)ices of ttle U.S. AtoInie Energy 
Commission. 

Experimental  

Crystals of COSO4.6 H20 were grown from a sa tura ted  
solution at  50-55 ° . The in tens i ty  da ta  were obtained 
by mult iple  film Weissenberg techniques. The film 
pho tography  was done using F e K ~  (~=1.9373 A) 
X-rays,  on Ilford Indus t r ia l  G film. Intensi t ies  were 
es t imated visually by comparison with a calibrated 
set of spots. The scaling factor used between mult iple 
films of the same layer was exp (2.0 sec/z), where /~ 
is the equi- incl inat ion angle and 2-0 is an empirical ly 
determined constant  from the da ta ;  this scaling factor 
varied from 7.4 at  the zero layer (/~=0°), to 12.9 at  
the s ixteenth layer (/z=38-7°). 

The first single crystal  of COS04.6 H20 was enclosed 
in a 0.1 mm. glass capillary. At the t ime we felt the 


